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1School of Banking and Finance

University of New South Wales

Sydney NSW2052

Australia

R.Bhar@unsw.edu.au

2,3School of Finance and Economics

University of Technology, Sydney

PO Box 123, Broadway NSW2007

Australia
2Carl.Chiarella@uts.edu.au

3Thuy.D.To@uts.edu.au

ABSTRACT. Research on the Heath-Jarrow-Morton (1992) term structure models so

far has focused on the class having time-deterministic instantaneous forward rate

volatility. In this case the forward rate is Markovian, even if the spot rate process

is not. However, this Markovian feature can only be used under the historical mea-

sure, involving two unsatisfactory assumptions: one on market price of risk, usually

made for pure mathematical tractability, the other to use futures yields as a proxy

for the instantaneous forward rate, which may results in estimation bias. This paper

circumvents both of these assumptions. First, the bias is quantified and shown to be

non-negligible. Then futures contracts are treated as derivative instruments written

on forward rates to derive the full information maximum likelihood estimator for ob-

servable futures prices, using both time series and cross-sectional data, without the

need to assume and estimate any functional forms for the market price of interest rate

risk. The derivation involves the likelihood transformation method of Duan (1994).

The method is then applied to the estimation of a humped forward rate volatility

model for Eurodollar futures series traded on the Chicago Mercantile Exchange.

Key words: Term structure; Heath-Jarrow-Morton; Time-deterministic forward volatil-

ity; Humped forward volatility model; Full information maximum likelihood
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1. INTRODUCTION

Interest rate modelling has long been of interest to researchers and practitioners.

The arbitrage-free approach to modelling the term structure of interest rates has its

origin in Ho and Lee (1986), and is most clearly articulated in Heath, Jarrow, Morton

(1992), (hereafter HJM). The model is based on the specification of the term structure
1
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of forward rates in terms of the initial forward rate curve and the forward rate volatility.

The condition that rules out arbitrage opportunities determines uniquely the drift of

the instantaneous forward rate from the forward rate volatility via the market price of

interest rate risk. Under the equivalent measure, this market price of risk disappears.

The dynamics of the instantaneous spot rate is then developed from the forward rate

evolution.

The HJM approach, therefore, has many advantages over the earlier approaches

such as Vasicek (1977), Brennan and Schwartz ((1979, 1982)), Cox et al. (1985). First,

the model matches the current term structure by construction. Second, there is no need

for any assumptions on investors’ preferences. Third, the model offers a parsimonious

representation of the market dynamics and requires only specification of the form of

the forward rate volatility function. Despite these advantages, there have been very

few empirical studies of the HJM model. This is due to the fact that in its most general

form, the resulting instantaneous spot rate evolution is not path-independent, ie. it is

non-Markovian, and the entire history of the term structure has to be carried forward,

thus increasing the computational complexity.

In one approach to the empirical study of the HJM model, researchers have relied

on implied volatility, most notably Amin and Morton (1994) and Amin and Ng (1997).

Under this approach, each day, the volatility parameters are backed out from market

prices of derivative instruments, for example, by finding the set of parameters that

minimizes the sum of squared errors. The implied volatility approach gives estimates

of the model parameters that change every day. This approach is useful from the

perspective of market practitioners who need to calibrate the model daily to prevailing

market conditions in order to ensure accurate pricing and hedging strategies.

The focus of this paper will rather be on estimation of the (fixed) parameters of a

volatility specification across an estimation period, for example to find the “best” from

a family of possible volatility specifications. The resulting functional forms could of

course then be used by market practitioners in their calibration procedures.

The approach to estimation so far adopted relies on reducing the system to Markov-

ian form under some particular functional specification of the forward rate volatility.

Theoretical work on reduction-to-Markovian form can be found in Bjork and Svensson

(2001), Bliss and Ritchken (1996), Bhar and Chiarella (1997b), Chiarella and Kwon

(2001a, 2001b), De Jong and Santa-Clara (1999), Inui and Kijima (1998), Ritchken

and Sankarasubramanian (1995). Within these classes of models, empirical work lags

behind the cited theoretical developments.

The HJM class that has time-deterministic instantaneous forward rate volatility is

regarded as relatively easy to implement. This is because the instantaneous forward



MAXIMUM LIKELIHOOD APPROACH TO ESTIMATION OF HJM MODELS 3

rate is Markovian, and therefore there is no apparent need to Markovianize the spot

rate of interest1. However, if this Markovian forward rate dynamics is used directly in

estimation, there are two main issues to consider: how to handle the market price of

risk and the approximation problem.

The market price of risk is a difficult quantity to work with. Empirical studies so far

have relied on analytical formulae of market variables (e.g. bond price or futures price

formulae) so that there is no need to consider the market price of risk in estimation.

There is only a limited number of volatility specifications that allows such analytical

results. Examples include the constant volatility model in Flesaker (1993), the ex-

ponential volatility model and exponential square-root model2 in Bhar and Chiarella

(1997a) and Raj et al. (1997). In general, one will have to work with the forward rate

in the historical measure, and have to assume a functional form for the market price

of risk, which is taken for mathematical tractability rather than any economic justifi-

cation. For example, De Jong and Santa-Clara (1999) assume that the market price of

risk is proportional to the square root of the spot rate in order to estimate one affine

representation of their class of models, whereas Bühler et al. (1999) do not consider

the link between drift and volatility at all when they attempt the Maximum Likelihood

Approach to test models where the instantaneous volatility is either constant or a linear

function of the forward rate.

The second issue concerns the un-observability of the instantaneous forward rate,

since using a fixed-maturity futures rate as a proxy for it may result in estimation

bias. It turns out that for the class of HJM models where forward volatility function is

time deterministic, the evolution of the futures price can be derived from the forward

rate evolution. In section 2, the bias due to using fixed-maturity futures yields as

an approximation to instantaneous forward rates is quantified. In particular, the bias is

decomposed into two components, maturity bias and convexity bias. The maturity bias

arises from approximating an instantaneous forward rate by a fixed-maturity forward

rate, and is negligible if the fixed-maturity is small. The convexity bias, which is not

negligible, arises from using a fixed-maturity futures yield to approximate the fixed-

maturity forward rate.

This paper takes advantage of the link between forward and futures rate evolution

(due to the time deterministic forward rate volatility specification) to derive the ex-

act likelihood function for the time series of futures prices observed in the market,

1It should be noted that although there are important classes of HJM with time-deterministic forward
volatility whose spot rate can be placed into a Markovianized system, the question of whether all HJM
models with time-deterministic volatility have this property is still an open question for research.
2In the exponential square-root model, the instantaneous forward volatility is the product of an exponen-
tial function of time to maturity and the square-root of instantaneous spot rate of interest.
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rather than treating the short maturity futures rate as a proxy for the instantaneous for-

ward rate. A similar approach has been used by Pearson and Sun (1994) in estimating

the Cox, Ingersoll, Ross model, and by Ho et al. (2001) in estimating the one factor

HJM model with exponential forward volatility function. These studies rely on the

closed-form solution for bond prices and futures prices to estimate the unobservable

instantaneous spot rate and forward rate respectively. The key advance in our approach

is that we recognize the observable futures rate as a derivative instrument driven by the

same source of uncertainty as that driving the underlying unobservable forward rate.

Therefore, despite the fact that we cannot establish a closed-form formula for the fu-

tures price on forward rate, we are able to derive the exact likelihood function for all

model specifications that have deterministic volatility forms, albeit the likelihood will

be different in its degree of complexity.

The major contribution of our paper, as a consequence, is a systematic method to

estimate a rich class of HJM models, where the forward volatility function is time

deterministic, and the spot rate may or may not be Markovian, without the need to

assume and estimate any functional forms for the market price of interest rate risk.

An additional important improvement in our estimation approach is that we recognize

that futures prices are less than perfectly correlated with each other under the stochas-

tic setting. Therefore, we apply the full information maximum likelihood method to

pooled time series and cross-sectional futures price data to estimate our model. By

incorporating cross-sectional data, we can exploit the full information content along a

yield curve.

The paper is organized as follows. Section 2 reviews the HJM model, discusses the

futures rate evolution given the forward rate evolution where forward rate volatility is

deterministic. This section will also discuss the bias in using futures rates to approx-

imate forward rates. Section 3 then presents the likelihood transformation method,

utilizing the results of Duan (1994) to simplify the likelihood calculation. The full

information likelihood is derived by transforming market variables to state variables

whose density can be found by analytically solving the Kolmogorov partial differential

equation, subject to appropriate boundary conditions, as proposed by Lo (1988). Data

and models considered are described in section 4. We discuss the parameter estimate

in section 5. Section 6 concludes the paper.

2. FORWARD AND FUTURES LINK WITHIN HJM FRAMEWORK

Under the time deterministic forward rate volatility, HJM model assumes that in-

stantaneous T -maturity forward rate f(t, T ) (for t ≤ T ∈ R
+) evolves according to
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f(t, T ) = f(0, T ) +

∫ t

0
µ(u, T, ·)du +

I∑

i=1

∫ t

0
σi(u, T )dWi(u), (2.1)

where the Wi(t) are standard Wiener processes under the historical measure Q, and

µ(t, T, ·) and the σi(t, T ) are respectively the drift and the set of diffusion coefficients

for the instantaneous forward rate to maturity T .

HJM show that the elimination of arbitrage opportunities implies that the drift is

uniquely determined by the volatility function via the market prices of interest rate

risk φi(t) according to

µ(t, T, ·) = −
∑

i

σi(t, T )

[
φi(t) −

∫ T

t

σi(t, s)ds

]
. (2.2)

The forward rate evolution can then be described under the equivalent measure Q̃,

where the market price of risk is absorbed into the Wiener process under Q̃, as the

stochastic integral equation

f(t, T ) = f(0, T ) +
∑

i

[∫ t

0
σi(u, T )

∫ T

u

σi(u, s)ds du +

∫ t

0
σi(u, T )dW̃i(u)

]
,

(2.3)

or in the more familiar form of a stochastic differential equation as

df(t, T ) =
∑

i

[
σi(t, T )

∫ T

t

σi(t, s)ds + σi(t, T )dW̃ (t)

]
. (2.4)

The evolution of the instantaneous spot rate of interest can be derived accordingly

from (2.3) by setting T = t, thus,

r(t) = f(0, t) +
∑

i

[∫ t

0
σi(u, t)

∫ t

u

σi(u, s)ds du +

∫ t

0
σi(u, t)dW̃i(u)

]
.

The corresponding stochastic differential equation for the instantaneous spot rate of

interest is

dr(t) =

[
f2(0, t) +

∑

i

(
∂

∂t

∫ t

0
σi(u, t)

∫ t

u

σi(u, s)ds du +

∫ t

0

∂σi(u, t)

∂t
dW̃i(u)

)]
dt

+
∑

i

σi(t, t)dW̃i(t). (2.5)

Any derivative instruments can then be priced under the risk neutral measure. A

futures contract is a derivative instrument written on a bond, and therefore, its price

today is just the expectation of the future payoff under the risk neutral measure.
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Let F (t, TF , TB) be the price at time t of a futures contract maturing at time TF (>

t). The contract is written on a pure discount instrument which has a face value of $1

and matures at time TB(> TF ).

Proposition 2.1. The evolution of F (t, TF , TB) is given by the stochastic integral

equation

F (t, TF , TB) = F (0, TF , TB) exp

[
−

1

2

∑

i

∫ t

0

(∫ TB

TF

σi(u, s)ds

)2

du

−
∑

i

∫ t

0

(∫ TB

TF

σi(u, s)ds

)
dW̃i(u)

]
,

or equivalently by the stochastic differential equation

dF (t, TF , TB)

F (t, TF , TB)
= −

∑

i

(∫ TB

TF

σi(t, s)ds

)
dW̃i(t). (2.6)

Proof. The proof is a straight forward extension of the model in Musiela et al. (1992)

where only one noise term is considered. Details can be found in Appendix A. �

Let y(t, TF , TB) be the corresponding “futures yield”, ie. the quantity defined ac-

cording to

F (t, TF , TB) =
1

1 + y(t, TF , TB)(TB − TF )
. (2.7)

Application of Itô lemma gives

dy(t, TF , TB) =
∑

i

(∫ TB

TF

σi(t, s)ds

)2(
1

TB − TF

+ y(t, TF , TB)

)
dt

+
∑

i

(∫ TB

TF

σi(t, s)ds

)(
1

TB − TF

+ y(t, TF , TB)

)
dW̃i(t).

(2.8)

Under the equivalent measure Q̃, the forward rate f(t, TF , TB) is distributed nor-

mally, whereas the futures yield y(t, TF , TB) is not distributed normally. The resulting

variances of the two processes are different, depending on the maturity of the futures

contract (ie. TB − TF ) and the specification of the volatility function. Since the vari-

ance structure is preserved under the transformation from the historical measure to

the equivalent measure (see Figure 1), using futures rates as a proxy for forward rates

(under the historical measure) will impose a wrong variance on the distribution, and

therefore, distort the estimation results.
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FIGURE 1. The change of measure
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To be more precise, from (2.3), the variance of the instantaneous forward rate is

var
(
f(t, TB)

)
=
∑

i

∫ t

t0

σ2
i (u, TB)du, (2.9)

whereas the variance of the fixed-maturity futures rate is (see Appendix B)

var
(
y(t, TF , TB)

)
=

(
1

TB − TF

+ y(0, TF , TB)

)2

× exp

(
2
∑

i

∫ t

t0

(∫ TB

TF

σi(u, s)ds

)2

du

)

×

[
exp

(
∑

i

∫ t

t0

(∫ TB

TF

σi(u, s)ds

)2

du

)
− 1

]
. (2.10)

The difference between the two variance measures is the overall bias, which can be

decomposed into two components, maturity bias and convexity bias, as illustrated in

Figure 2.
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The maturity bias component, which arises from approximating an instantaneous

forward rate by a fixed-maturity forward rate, is given by 3

Maturity Bias =
1

(TB − TF )2

∑

i

∫ t

t0

(∫ TB

TF

σ(u, s)ds

)2

du

−
∑

i

∫ t

t0

σ2
i (u, TB)du. (2.11)

This bias component is negligible when the fixed-maturity is short (ie. τ = TB−TF →

0). This is in agreement with Chapman et al. (1999) who study the bias induced by

using short rates as a proxy for the instantaneous spot rate. They also conclude that the

bias is not economically significant in the class of linear short rate models, to which

the HJM with deterministic volatility belongs.

The convexity bias component, which arises from approximating the fixed-maturity

forward rate by a fixed-maturity futures rate, is given by

Convexity Bias =

(
1

TB − TF

+ y(0, TF , TB)

)2

e2σ2
f

(
eσ2

f − 1
)
−

1

(TB − TF )2
σ2

f ,

(2.12)

where

σ2
f =

∑

i

∫ t

t0

(∫ TB

TF

σi(u, s)ds

)2

du,

which is non-negligible due to the existence of the initial futures yield value and the

convexity of the exponential function. The difference between forward rates and fu-

tures rates results from the difference between forward contract prices and futures con-

tract prices. The marking-to-market feature of futures contracts causes their prices to

differ from forward contract prices under a stochastic interest rate environment. Even

without this daily marking-to-market feature, Amin and Morton (1994) (p. 152) argue

qualitatively that “an unambiguous forward price does not exist which corresponds to

the [Eurodollar] futures price”. This is because the terminal futures price is based on

the yield, which is not a linear function of the price of the traded asset, and therefore,

standard arbitrage argument cannot be applied.

From (2.6), it can be seen that the futures contract is a derivative instrument written

on the instantaneous forward rate, and therefore, the futures price is driven by the

same source of uncertainty as that driving the instantaneous forward rate. Knowing

the structure of the uncertainty source allows us to derive the likelihood function for

the observable futures prices, without the need to assume and estimate the market

price of risk. However, it is proved in Lo (1988) that a naive discretization of the

3The derivation for the conditional variance of the fixed-maturity forward rate is given in Appendix C
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continuous Itô process, which guarantees the convergence of the discretized sample

paths, may not necessarily guarantee the convergence of the discretized estimators to

the true parameters of interest, ie. mis-specification of the true likelihood function

will lead to inconsistent estimators. In the next section, we will revise the likelihood

transformation technique, and derive the likelihood function for quoted futures prices

via a state variable whose likelihood function is readily available.

3. THE LIKELIHOOD TRANSFORMATION TECHNIQUE

3.1. State variables. Assume that for each underlying pure-discount interest rate in-

strument, there are K futures contracts maturing at times TFk (k = 1, 2, . . . , K). The

(observable) quoted futures price in the market is G(t, TFk, TBk), which is linked with

F (t, TFk, TBk) via a function γ

F (t, TFk, TBk) ≡ η
(
G(t, TFk, TBk)

)
. (3.1)

The link between F and G depends on the quoting convention of each exchange. For

example, Eurodollar futures prices traded on the Chicago Mercantile Exchange are

quoted as

F (t, TFk, TBk) =
1

1 +
(
1 − G(t,TFk,TBk)

100

)
(TBk − TFk)

≡ η
(
G(t, TFk, TBk)

)
. (3.2)

We are considering the case in which all of the futures contracts are written on the same

underlying instrument, and therefore the time to maturity of the underlying contract is

TBk − TFk = τ constant for all k ∈ [0, K].

Assuming that there is a measurement error in the market (for example, due to

bid-ask spread), we introduce into the evolution of F (t, TFk, TBk) a new Wiener pro-

cesses ε̃k which is independent of the processes driving the uncertainty of forward

rates. We further assume that the market errors for the return on futures with different

maturities are uncorrelated with each other. The stochastic differential equation for

F (t, TFk, TBk) becomes 4

dF (t, TFk, TBk)

F (t, TFk, TBk)
= −

∑

i

(∫ TBk

TFk

σi(t, s)ds

)
dW̃i(t) + σεdε̃k. (3.3)

4In practice, the value of σε should be small (in order and magnitude) in comparison with forward rate
volatility σ, so that any attempt to set up an arbitrage portfolio to trade on this uncertainty source will not
result in profits after bid-ask spread and transaction costs are taken into account.
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Let

X(t, TFk, TBk) = ln(F (t, TFk, TBk))

≡ ζ(F (t, TFk, TBk)). (3.4)

Application of Itô lemma gives

dX(t, TFk, TBk) = −
1

2

[
∑

i

(∫ TBk

TFk

σi(t, s)ds

)2

+ σ2
ε

]
dt

−
∑

i

∫ TBk

TFk

σi(t, s)ds dW̃ (t) + σεdε̃k. (3.5)

If we know the likelihood function for X , then we can use the transformation tech-

nique twice to derive first the likelihood function for F and then the market quoted

variable G. In the next section, we will revise the likelihood transformation technique,

and utilize Duan’s (1994) result to simplify it. In the subsequent section, we will write

out the exact likelihood function for the quoted futures price, pooled time series and

cross sectional data.

3.2. Likelihood transformation formula. Let Xj k ≡ X(tj , TFk, τ) ≡ X(tj , TFk, TBk)
5

be an unobservable state variable k (k = 1, 2, . . . , K) occurring at time tj < TF

(j = 0, 1, . . . , J).

Denote by xj the vector of unobservable state variables occurring at the tj , ie. xj =(
X(tj , T1, τ), X(tj , T2, τ), . . . , X(tj , TK , τ)

)
. Denote by x the unobservable state

vector of size K(J + 1) × 1 at time tJ , ie.

x = vec ( x0 x1 . . . xJ )

= vec




X(t0, TF1, τ) X(t1, TF1, τ) . . . X(tJ , TF1, τ)

X(t0, TF2, τ) X(t1, TF2, τ) . . . X(tJ , TF2, τ)
...

...
. . .

...

X(t0, TFK , τ) X(t1, TFK , τ) . . . X(tJ , TFK , τ)




,

where vec is the standard matrix operator that, when applied to a matrix, transforms

the matrix into a vector by stacking the columns of the matrix on top of each other.

Denote the density function of X by

pX(x; θ) = pX(x0, x1, . . . , xJ ; θ),

where θ ∈ Θ is the parameter vector of interest.

5We can write X(tj , TBk, τ) ≡ X(tj , TFk, TBk) because TBk − TFk = τ constant for all k =
1, 2, . . . , K
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Suppose that a transformation ϑ exists, which applied to X , produces a vector Z

that is observable in the market

Z = ϑ(X; θ) : R
K(J+1)×1 → R

K(J+1)×1,

where

z = vec ( z0 z1 . . . zJ )

= vec




Z01 Z11 . . . ZJ1

Z02 Z12 . . . ZJ2

...
...

. . .
...

Z0K Z1K . . . ZJK




.

Assume that this transformation is one-to-one for every θ ∈ Θ.

Since ϑ is one-to-one, there exists an inverse ϑ−1 = ζ(Z; θ). Applying the stan-

dard change of variable technique

pZ(z, θ) = pX (ζ(z; θ)) ×
∣∣J (ζ(z; θ))

∣∣,

where J is the Jacobian of the transformation from X to Z, ie.

J (ζ(z; θ)) =

∣∣∣∣
∂ζ(z; θ)

∂z′

∣∣∣∣ .

Duan (1994) proves that if the transformation is on an element-by-element basis, ie.

Zj k = ϑj k(Xj k) (and Xj k = ζj k(Zj k)) for all j ∈ [0, J ] and k ∈ [1, K], then the

first-derivative matrix is diagonal, therefore

J (ζ(z; θ)) =
J∏

j=0

K∏

k=1

dζj k(Zj k; θ)

dZj k

.

Furthermore, if X is “joint-Markovian”, ie.

pX(x0, x1, . . . , xJ ; θ) = pX(x0, t0; θ)
J∏

j=1

pX(xj , tj |xj−1, tj−1; θ)

then upon substitution, the likelihood for Z can be compactly written as

pZ(z0, z1, . . . , zJ ; θ) = pZ(z0, t0; θ)

J∏

j=1

pZ(zj , tj |zj−1, tj−1; θ),

where

pZ(z0, t0; θ) = pX

(
ζ0(y0), t0; θ

)
×
∣∣∣J
(
ζ0(z0; θ)

)∣∣∣,

pZ

(
zj , tj |zj−1, tj−1; θ

)
= pX

(
ζj(zj), tj |ζj−1(zj−1), tj−1; θ

)
×
∣∣∣J
(
ζj(zj ; θ)

)∣∣∣,
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and

J
(
ζ(zj ; θ)

)
=

K∏

k=1

dζj k(Zj k; θ)

dZj k

(j = 0, 1, . . . , J).

3.3. Full information maximum likelihood function. We now first focus on the

state variable X(t, TFk, TBk) which is driven by the stochastic differential equation

dX(t, TFk, TBk) = −
1

2

[
∑

i

(∫ TBk

TFk

σi(t, s)ds

)2

+ σ2
ε

]
dt

−
∑

i

∫ TBk

TFk

σi(t, s)ds dW̃ (t) + σεdε̃k. (3.6)

Suppose that the process is sampled at J + 1 discrete points in time t0, t1, . . . , tn

(not necessarily equally spaced apart). Due to the Markovian nature of the stochastic

process for X(t, TFk, TBk), the likelihood function for (X0 k, X1 k, . . . , XJ k)
6, for a

given parameter vector of interest θ ∈ Θ, is

pX(X0 k, X1 k, . . . , XJ k; θ) = pX(X0 k, t0; θ)

J∏

j=1

pX(Xj k, tj |X(j−1) k, tj−1; θ).

With this discrete sample, it is proved in Lo (1988) 7 that the transitional likelihood

function has a Gaussian form

pX(Xj k, tj |X(j−1) k, tj−1; θ) =
[
2πβj(kk)

]− 1
2 exp

[
−

(
Xj k − X(j−1) k − αj k

)2

2βj(kk)

]
,

where

Drift αj k = −
1

2

[
∑

i

∫ tj

tj−1

(∫ TBk

TFk

σi(u, s)ds

)2

du +

∫ tj

tj−1

σ2
εdu

]
, (3.7)

Variance βj(kk) =
∑

i

∫ tj

tj−1

(∫ TBk

TFk

σi(u, s)ds

)2

du +

∫ tj

tj−1

σ2
εdu. (3.8)

6Recall that Xj k ≡ X(tj , TFk, TBk)
7Lo (1988) proves the case where there is only one noise term. By substitution, it is a straight forward
extension to prove the result for the multiple-noise case. In any event, the result is merely a consequence
of the fact that the process (3.6) for X(t, TFk, TBk) is Gaussian due to the assumption of time dependent
volatility functions.
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If we incorporate cross-sectional data into our study to exploit the full informa-

tion content of the yield curve, the transitional likelihood function will have a multi-

dimensional Gaussian form

pX(xj , tj |xj−1, tj−1;θ) = (2π)−
K
2

∣∣Ωj

∣∣− 1
2×

exp

(
−

1

2
(xj − xj−1 − αj)

′

Ω
−1
j (xj − xj−1 − αj)

)
,

(3.9)

where

Drift αj = (αj 1 , αj 2 , . . . , αj k , . . . , αj K)
′

,

Covariance matrix Ωj =




βj(11) βj(12) . . . βj(1K)

βj(21) βj(22) . . . βj(2K)
...

...
. . .

...

βj(K1) βj(K2) . . . βj(KK)




,

and for k1 6= k2
8

βj(k1k2) =
∑

i

∫ tj

tj−1

(∫ TBk1

TFk1

σi(u, s)ds

)(∫ TBk2

TFk2

σi(u, s)ds

)
du. (3.10)

The log likelihood function for the state variable X is

LX(θ) =
J∑

j=1

ln
(
pX

(
xj , tj |xj−1, tj−1; θ

))
. (3.11)

In the above formula we have ignored the unconditional probability of the first ob-

servation at time t0. As argued in Aı̈t-Sahalia (2001), this unconditional probability is

dominated by the sum of all conditional density terms when the sample size becomes

large.

Recall that there exists a transformation from X to F (see (3.4)) with inverse func-

tion ζ. It is clear that this transformation is on element-by-element basis. Applying

the transformation formula, the likelihood function for F is

LF (θ) =
J∑

j=1

ln
(
pX

(
ζ(F j), tj |ζ(F j−1), tj−1; θ

))
+

J∑

j=1

ln

∣∣∣∣
∂ζj(F j ; θ)

∂F j

∣∣∣∣ . (3.12)

Applying the transformation the second time from F to G, the quoted futures price

in the market, with the inverse transformation function η (see (3.1)) results in the log

8Note that the drift αj k and variance βj(kk) have been defined in (3.7) and (3.8) respectively.
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likelihood function

LG(θ) =
J∑

j=1

ln
(
pF

(
η(Gj), tj |η(Gj−1), tj−1; θ

))
+

J∑

j=1

ln

∣∣∣∣
∂ηj(Gj ; θ)

∂Gj

∣∣∣∣ .

(3.13)

4. MODELS AND DATA

4.1. Models. In this paper, we focus on single-factor HJM model, ie. there is only a

single source of uncertainty. Since we are using futures data, which is usually actively

traded for maturities less than 5 years, there is insufficient variation in the term struc-

ture across different maturities to separate the effect of different uncertainty sources.

In addition, Dybvig (1990), as cited in Amin and Morton (1994), shows that almost all

of the variation in forward rates with maturities less than five years can be explained

by a dominant single factor.

The class of HJM model with which one is working is determined by the specifi-

cation of the volatility function. We choose a fairly general “time-invariant” humped-

volatility curve, ie. the volatility σ(t, T ) depends on T − t only, not on the calendar

date t, thus

σ(t, T ) = [σ0 + σ1(T − t)] exp(−κ(T − t)). (4.1)

Despite the fact that the implied volatility functions obtained from caps and swaptions

data often exhibit a humped volatility structure (Amin and Morton (1994), p. 160, and

Hull and White (1996), p. 33), as far as we know, there has so far only the attempt of

Ritchken and Chuang (1999) to estimate the humped-volatility model of the form (4.1)

in the HJM framework9. The model nests many of the time-deterministic volatility

forms considered in the literature so far:

• The exponential model (Hull and White (1990) Extended Vasicek Model):

σ(t, T ) = σ0 exp(−κ(T − t))

• The linear absolute model: σ(t, T ) = σ0 + σ1(T − t)

• The absolute (or constant) model (Ho and Lee (1986) model): σ(t, T ) = σ0

The analytical expression for the log likelihood function of the quoted futures price

under this volatility specification involves performing the integrations in (3.7), (3.8),

(3.10), and details can be found in Appendix D.

4.2. Data. We apply the method outlined above to short term interest rate futures

contracts traded on the Chicago Mercantile Exchange (CME). The CME contracts are

9Ritchken and Chuang (1999) also need to rely on the Markovianization of the interest rate system. Even
though we estimate the same model, we do not rely on the property of Markovianization of the system
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written on Eurodollar Time Deposits with a three-month maturity. The last trading day

for each contract is the second London bank business day before the third Wednesday

of the contract month, which rests in the March, June, September, December cycle.

The data is taken from Datastream.

The CME Eurodollar futures contracts are chosen for their extreme liquidity. Table

1 reports the average daily trading volume of contracts used in our study.

Table 1: CME Eurodollar Futures Contracts

This table reports the contracts used in our estimation, as explained in the text, and

their corresponding average daily trading volume in $US

Year Begin End Total Number Observation Average Daily

Contract Contract of Contracts per Series Trading Volume

1987 03/1988 09/198810 2 211 5,653

1988 03/1989 12/1989 2 211 7,100

1989 03/1990 09/1991 3 211 7,119

1990 03/1991 09/1992 3 213 8,216

1991 03/1992 06/1994 4 212 8,238

1992 03/1993 06/1995 4 213 14,913

1993 03/1994 12/1997 6 210 11,840

1994 03/1995 12/1998 6 210 19,434

1995 03/1996 12/1999 6 210 15,397

1996 03/1997 12/2000 6 214 15,883

1997 03/1998 12/2001 6 210 16,990

1998 03/1999 12/2002 6 213 18,709

1999 03/2000 12/2003 6 209 16,497

2000 03/2001 12/2004 6 211 17,926

2001 03/2002 12/2005 6 210 30,762

The CME data covers the 15-year period from January 1, 1987 to December 31,

2001. The period is chosen so that the first 6-year period coincides with the data used

in Amin and Morton (1994). We estimate our model for each year period separately,

since the volatility parameters must reflect the current market condition, as also argued

in Bühler et al. (1999). Each year we use trading data from January 1 to October 31

to form initial estimates. We then use trading data during November and December to

check parameter stability, by the moving window approach. For each trading year, the

futures series considered starts from the March contract maturing the following year,

until the last actively traded contracts. To ensure a sufficient variation in futures prices,

10According to our design, we would have chosen the 12/1988 contract if it had been traded
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FIGURE 3. Research Design
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...
...

1/01

12/01

}
Moving-window estimations

and so avoid possible singularity of the covariance matrix, the set of contracts used are

spaced three quarter apart. For example, to estimate volatility parameters for 2001,

we use March 2002, December 2002, September 2003, June 2004, March 2005 and

December 2005 contracts (see Figure 3)11. Since the trading activities in each year are

different, the number of contracts included in our analysis varies with time, as shown

in table 1. From 1993 to 2001, 6 contracts are included in our analysis. On average,

there are 211 observations for each series.

5. EMPIRICAL RESULTS

5.1. First sample period: 1987-1992. The estimates of parameters of the humped-

volatility model for the first sample period can be found in table 2. This sample period

is chosen to coincide with the sample used in Amin and Morton’s (1994) implied

volatility work. In their article, they conclude in favour of the absolute model, due to

its ability to deliver stable parameter values, and to deliver profits when it trades on

perceived mispricing. In line with their finding, it is not a surprise that we find a highly

insignificant estimate of σ1 and κ in most of the years, with the exception of 1988 and

1992, suggesting that the forward volatility is over-parameterized.

11For all of the years, we have repeated the estimation using different combination of futures price series
(such as different starting contracts and different spacing between contracts), and the estimation results
are not significantly different
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Table 2: Humped-volatility model estimation for the first sample

period 1987-1992

This table reports the estimation result for period 1987-1992 under forward rate humped-

volatility specification, σ(t, T ) = (σ0 + σ1(T − t)) exp(−κ(T − t)). Asymptotic standard

errors of the estimate (White-consistent estimator) are inside parentheses. The symbol †

indicates insignificant parameter values at 99% confidence level. All values of σ and their

corresponding standard errors are reported in percentage.

Year σ0 (%) σ1 (%) κ σε (%) Log Likelihood

1987 2.299 0.3 × 10−5 0.066 0.087 545.65

(0.133) (0.414)† (0.183)† (0.004)

1988 0.848 1.622 0.706 0.072 712.12

(0.296) (0.629) (0.128) (0.003)

1989 1.932 1.76 × 10−5 0.246 0.119 969.3

(0.123) (0.306)† (0.160)† (0.004)

1990 1.056 0.581 0.411 0.118 1034.4

(0.217) (0.459)† (0.158) (0.004)

1991 1.115 3.02 × 10−5 0.164 0.078 1760.1

(0.065) (0.128)† (0.116)† (0.002)

1992 0.341 1.389 0.657 0.093 1565.0

(0.163) (0.275) (0.032) (0.003)

We therefore re-estimate our models for 1987, 1989, 1990 and 1991 with the ex-

ponential, linear absolute and absolute models, and check the overall model fit by the

likelihood ratio test. Among this class, the exponential model performs best, deliv-

ering significant parameter estimates without any significant loss of likelihood values

(see table 3).

Similar to the implied value of Amin and Morton (1994), we find that the instanta-

neous volatility of the spot rate (which is σ0 in the HJM model with time-deterministic

instantaneous forward rate volatility) averages at about 1.3%. The standard error of

our historical estimate is lower than the standard deviation of their implied values.

Moreover, we do not find that our estimate is unstable with respect to initial param-

eter values nor to have large Hessian matrix (in order and magnitude) as reported in

their study. The estimated volatilities of measurement error (σε) are small in order and

magnitude in all years.

As can be seen from Figure 4, the humps in the volatility curves of 1988 and 1992

occur at about 1-1.5 years to maturity. The exponential volatility curves (in 1988,

1989, 1990) have positive decay factors κ, thus, the spot rate has higher instantaneous
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TABLE 3. Estimation result for the first sample period 1987-1992

This table reports the best model for each year and the corresponding parameter val-
ues. Asymptotic standard errors of the estimate (White-consistent estimator) are inside
parentheses. All values of σ and their corresponding standard errors are reported in
percentage. The p-value for likelihood ratio test (between the humped model and the
model reported here) are inside square brackets and under the corresponding likeli-
hood value
Year Model σ0 (%) σ1 (%) κ σε (%) Log Likelihood
1987 Exponential 2.299 - 0.066 0.087 545.65

(0.133) - (0.030) (0.004) [1.000]
1988 Humped 0.848 1.622 0.706 0.072 712.12

(0.296) (0.629) (0.128) (0.003) -
1989 Exponential 1.932 - 0.246 0.119 969.3

(0.123) - (0.025) (0.004) [1.000]
1990 Exponential 1.2234 - 0.120 0.118 1033.9

(0.088) - (0.031) (0.004) [0.480]
1991 Exponential 1.115 - 0.164 0.078 1760.1

(0.065) - (0.016) (0.002) [1.000]
1992 Humped 0.341 1.389 0.657 0.093 1565.0

(0.163) (0.275) (0.032) (0.003) -

FIGURE 4. Instantaneous forward volatility - First sample period
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volatility than any forward rates, and short term forward rates have higher instanta-

neous volatility than longer term forward rates.

5.2. Second sample period: 1993-2001. In the second sample period, we find that

the humped-volatility model is preferred to the exponential, linear absolute and the

absolute model. The parameter estimates can be found in table 4.



MAXIMUM LIKELIHOOD APPROACH TO ESTIMATION OF HJM MODELS 19

Table 4: Humped-volatility model estimation for the second sam-

ple period: 1993-2001

This table reports the estimation result for period 1993-2001 under forward rate humped-

volatility specification, σ(t, T ) = (σ0 + σ1(T − t)) exp(−κ(T − t)). Asymptotic standard

errors of the estimate (White-consistent estimator) are inside parentheses. All values of σ and

their corresponding standard errors are reported in percentage.

Year σ0(%) σ1(%) κ σε(%)

1993 0.836 0.401 0.267 0.072

(0.079) (0.092) (0.031) (0.001)

1994 1.182 0.238 0.144 0.055

(0.070) (0.067) (0.027) (0.001)

1995 1.385 0.553 0.346 0.080

(0.112) (0.136) (0.033) (0.002)

1996 1.325 0.445 0.261 0.061

(0.085) (0.085) (0.023) (0.001)

1997 0.609 0.324 0.218 0.037

(0.040) (0.038) (0.016) (0.006)

1998 0.427 0.617 0.306 0.069

(0.055) (0.069) (0.019) (0.001)

1999 0.432 0.619 0.265 0.064

(0.055) (0.066) (0.017) (0.001)

2000 0.629 0.320 0.213 0.094

(0.061) (0.068) (0.047) (0.002)

2001 1.051 0.213 0.124 0.094

(0.083) (0.104) (0.047) (0.002)

A humped forward volatility curve implies that the instantaneous volatility of the

spot rate is lower than short-term forward volatilities. However, forward volatility

gradually decreases as time to maturity increases, and finally reaches a lower level

than the spot rate volatility. Figure 5 shows that the humps usually occur at 1-3 years

to maturity.

From Figure 5, there appears to have temporal clusters of spot rate volatilities (the

instantaneous volatility of the spot rate is equal to the instantaneous volatility of a

forward rate with zero time to maturity). The spot rate volatilities average at 1.1%

during 1993-1996, then decrease to around 0.5% level during 1997-2000, and finally
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FIGURE 5. Instantaneous forward volatility - Second sample period
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bounce back to 1.1% in 2001 (see also table 4)12. At the end of the forward volatility

curve, where there is still long time to maturity, the volatilities remain stable. The

7-year instantaneous forward volatility averages at about 0.7%.

5.3. Stability of the estimates. To check the stability of our estimates, we use a

“moving window” approach. We use trading data from January to October each year

to estimate our model. Then we move our window sample by 1 day, keeping sample

size constant (ie. the drop-one/add-one method) to compute sequential estimates until

the end of December each year. Figure 6 plots the series of instantaneous spot rate

volatility σ0 and the decay factor κ obtained in 1990. There are some fluctuations in

the series, but they do not seem to be unstable. The results for other years are reported

in table 5, which shows that the sequential estimates have low standard deviations.

12However, at this point of time, we do not have data to check whether the spot rate volatility will remain
at this level for the next few years.



MAXIMUM LIKELIHOOD APPROACH TO ESTIMATION OF HJM MODELS 21

FIGURE 6. Moving Window Approach: Parameter Estimates for
1990
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Table 5: Sequential estimates

The table reports the sequential estimate from moving window approach. Each year

the first estimate window starts with trading data covering January to October. Then

the sample is moved by 1 day (add-one/drop-one method), and the model is re-

estimated. The process is repeated until all trading days in November and Decem-

ber are included in the samples. The value of σ0 and their corresponding standard

deviation are reported in percentage.

σ0 (%) κ
Year

Average Standard Deviation Average Standard Deviation

1987 2.324 0.012 0.066 0.030

1988 0.895 0.093 0.788 0.073

1989 1.951 0.010 0.249 0.005

1990 1.236 0.039 0.148 0.035

1991 1.101 0.023 0.175 0.009

1992 0.372 0.055 0.661 0.008

1993 0.609 0.101 0.325 0.024

1994 1.121 0.031 0.179 0.019

1995 1.249 0.107 0.345 0.007

1996 1.153 0.141 0.313 0.032

1997 0.585 0.017 0.226 0.007

1998 0.423 0.014 0.303 0.010

1999 0.401 0.029 0.273 0.011

2000 0.572 0.025 0.242 0.013
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FIGURE 7. Forward Volatility in 1990 (exponential shaped) and 2000
(humped shaped) - Moving Window Approach

Table 5: (Continued)

σ0 (%) κ
Year

Average Standard Deviation Average Standard Deviation

2001 0.755 0.154 0.270 0.066

The very small changes of our parameter estimates implies that the resulting forward

volatility curve experiences only slight and smooth movement over time. Figure 7

graphs two representative volatility curves, one having a simple exponential shape and

the other having the humped shape. As time goes, the instantaneous forward volatility

of long-to-maturity forward rates is more volatile than that of short-to-maturity for-

ward rates. Overall, the smooth volatility surfaces indicate adequate stability in our

estimation results.

5.4. Model fit. The model’s goodness of fit are assessed by tests on residuals. Since

the residuals of our estimates have different variances at each point of time by model

construction, we carry out goodness of fit test by checking the estimated standardized

residuals.

To test whether the standardized residuals come from a multivariate normal distri-

bution, we employ the Omnibus test, which has been corrected for small sample bias

and adapted to the multivariate case by Doornik and Hansen (1994). The test is derived

from Shenton and Bowman (1977), who give the sample kurtosis a gamma distribu-

tion, and D’Agostino (1970), who approximates the distribution of sample skewness

by the Johnson Su system. Under this test, we can reject the null hypothesis of normal

distribution for all sample periods, at 99% confidence level.
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FIGURE 8. First order serial correlation in estimated standardized
residuals

(The graph plots the absolute value of the correlation coefficients)

In addition, we calculate the serial correlation for the estimated standardized residu-

als. Even though our estimated correlation coefficients are much smaller than the level

of 0.90 reported by De Jong and Santa-Clara (1999), they are still high. The absolute

value of first order correlation coefficient averages at 0.16. The correlation reduces as

the lag time lengthens, but is still at 0.05 level at lag order 30 (see table 6). Figure

8, which plots the absolute value of the first order residual serial correlation, shows

that for most of the years, the residual serial correlation is higher in the mid-range

maturities, whereas for the short rates and long rates, the serial correlation is weaker.

The existence of serial correlation in the estimated standardized residuals up to very

long lags suggests that the model is misspecified. There are two ways to account for

this striking autocorrelation feature. The first is to consider other HJM specifications

where the instantaneous forward rate depends on the whole history of the term struc-

ture. This can be done by including either the instantaneous forward rate itself or the

instantaneous spot rate into the specification of the instantaneous forward rate volatil-

ity. The second is to consider forward rate models with jump. The omission of a jump

component when it exists will also result in autocorrelation. We leave these issues for

future research.
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Table 6: Residual serial correlation

This table reports the serial correlation coefficients for the standardized residuals from

the HJM estimation, at lag order 1 and order 30.

Maturity (in years)
Year AC

1.25 2 2.75 3.5 4.25 5

ρ(1) 0.361 0.053
1987

ρ(30) 0.044 -0.045

ρ(1) -0.340 -0.090
1988

ρ(30) 0.015 -0.159

ρ(1) 0.109 0.112
1989

ρ(30) 0.127 -0.082

ρ(1) 0.044 -0.332 -0.062
1990

ρ(30) -0.091 0.007 -0.028

ρ(1) 0.208 0.286 -0.080 0.169
1991

ρ(30) 0.052 0.009 0.054 0.018

ρ(1) 0.029 0.181 0.164 0.177
1992

ρ(30) -0.003 0.004 -0.011 0.002

ρ(1) 0.159 0.240 0.217 0.183 0.230 0.276
1993

ρ(30) 0.047 0.011 0.030 0.045 0.044 0.005

ρ(1) 0.290 0.194 0.151 0.057 -0.143 0.099
1994

ρ(30) -0.094 0.044 -0.024 -0.078 -0.003 0.031

ρ(1) 0.105 0.160 0.127 0.197 0.235 -0.071
1995

ρ(30) 0.002 -0.041 -0.062 -0.061 -0.073 -0.140

ρ(1) 0.079 0.097 0.214 0.148 0.129 0.122
1996

ρ(30) -0.108 -0.023 -0.051 -0.043 -0.058 -0.033

ρ(1) -0.097 0.156 -0.185 -0.199 0.041 0.140
1997

ρ(30) 0.006 0.069 0.026 -0.049 0.013 0.020

ρ(1) 0.241 0.148 0.176 0.365 0.259 0.259
1998

ρ(30) 0.057 -0.048 -0.102 0.019 -0.035 -0.046

ρ(1) 0.064 0.155 0.281 0.301 0.181 0.173
1999

ρ(30) 0.012 -0.096 -0.072 0.007 0.014 0.014

ρ(1) 0.104 0.108 0.079 -0.023 0.148 0.174
2000

ρ(30) 0.048 0.024 -0.024 0.135 0.084 0.074

ρ(1) 0.254 0.172 0.161 0.172 0.143 0.146
2001

ρ(30) 0.087 0.003 -0.108 -0.047 -0.007 -0.003
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6. CONCLUSION

This paper focuses on a method of estimation for a rich family of Heath-Jarrow-

Morton term structure models where the instantaneous forward rate volatility is time

deterministic, under which the process for the instantaneous spot rate may or may not

be able to be Markovianized. It is important to choose a model that best describes

the data. The resulting model then can be used by practitioners in their calibration

procedure.

Among different methods of estimation, the Maximum Likelihood Estimator has

favourable asymptotic properties. However, it cannot be applied directly in the HJM

framework due to the need to assume and estimate a functional form for the market

price of interest rate risk, and more importantly, due to the existence of the unobserv-

able instantaneous forward rate volatility. The attempt to use futures rates as a proxy

for forward rates leads to non-negligible estimation bias, which can be decomposed

into a maturity bias component and a convexity bias component.

The major contribution of this paper rests on the realization that a futures contract

can be viewed as a derivative instrument written on instantaneous forward rate, and

therefore is driven by the same source of uncertainty as that driving the forward rate

evolution. Using a likelihood transformation technique, and utilizing the result of Duan

(1994) to simplify the likelihood function, we are able to derive the exact likelihood

function for all model specifications that have deterministic volatility forms, albeit the

likelihood function will be different in its degree of complexity.

To demonstrate our method, we focus on the humped-forward rate volatility specifi-

cation suggested by the hump that is often revealed when an implied volatility function

is backed out from caps and swaptions data. We use 15-year data (from 1987-2001) of

CME Eurodollar futures data to estimate our model. We not only use time series, but

also pool in cross-sectional data, ie. futures contracts that have different tenors at each

point of time, in order to exploit the full information content of the yield curve.

For most of the years in our sample periods, we find that the humped-volatility

model performs adequately among its class. The exponential model works better dur-

ing the 3 years at the beginning of the sample period. There appears to be a temporal

clustering of instantaneous spot rate volatility. At the longer end of the curve, where

there is still long time to maturity, the instantaneous forward volatility stays at a fairly

constant level. Our estimate remains stable with respect to initial parameter values

and sample windows. However, the chosen volatility functional form does not fully

capture all the features of the data.
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We have set up a framework that allows estimation of all HJM model specifica-

tions which have time-deterministic instantaneous forward rate volatility, where the

instantaneous spot rate process may or may not be able to be represented in a Marko-

vianized system. Nevertheless, there still remains the empirical need and challenge

to estimate and test other non-deterministic forms of forward rate volatilities, or for-

ward rate volatility containing jump components. We intend to explore these issues in

subsequent research.

APPENDIX A. THE EVOLUTION OF FUTURES PRICE UNDER HJM MODEL

Let P (t, TB) be the price at time t of a pure discount instrument that has a face

value of $1 and matures at time TB , and let B(t, TB) be the corresponding log bond

price, ie B(t, TB) = ln P (t, TB).

Denote by F (t, TF , TB) the price at time t of a futures contract written on the pure

discount instrument. The futures contract matures at time TF .

Since futures contracts are marked-to-market, it is shown in Cox et al. (1981) that

the futures prices are a Martingale under the equivalent measure Q̃:

F (t, TF , TB) = E
Q̃
t

[
F (TF , TF , TB)|Ft

]

= E
Q̃
t

[
P (TF , TB)|Ft

]

= E
Q̃
t

[
exp(B(TF , TB))|Ft

]

We know that under Q̃

B(TF , TB) = −

∫ TB

TF

f(TF , s)ds

= −

∫ TB

TF

f(0, s)ds −
∑

i

∫ TB

TF

∫ TF

0
σi(u, s)

∫ s

u

σi(u, v)dv du ds

−
∑

i

∫ TB

TF

(∫ TF

0
σi(u, s)dW̃i(u)

)
ds

By an application of the stochastic Fubini theorem

B(TF , TB) = −

∫ TB

TF

f(0, s)ds −
∑

i

∫ TF

0

∫ TB

TF

σi(u, s)

∫ s

u

σi(u, v)dv ds du

−
∑

i

∫ TF

0

(∫ TB

TF

σi(u, s)ds

)
dW̃i(u)
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Therefore13

F (t, TF , TB) = exp

[
−

∫ TB

TF

f(0, s)ds −
∑

i

∫ TF

0

∫ TB

TF

σi(u, s)

∫ s

u

σi(u, v)dv ds du

−
∑

i

∫ t

0

∫ TB

TF

σi(u, s)ds dW̃i(u) +
1

2

∑

i

∫ TF

t

(∫ TB

TF

σi(u, s)ds

)2

du

]

Using the expansion obtained as a result of substituting t = 0, the above formula

can be reduced to

F (t, TF , TB) =F (0, TF , TB) exp

[
−

1

2

∑

i

∫ t

0

(∫ TB

TF

σi(u, s)ds

)2

du

−
∑

i

∫ t

0

∫ TB

TF

σi(u, s)ds dW̃i(u)

]

Taking stochastic differentials gives the stochastic differential equation for F (t, TF , TB)

as (2.6) in the text:

dF (t, TF , TB)

F (t, TF , TB)
= −

∑

i

∫ TB

TF

σi(t, s)ds dW̃i(t)

APPENDIX B. VARIANCE OF FUTURES YIELD

To ease the notation set

θi(t) =

∫ TB

TF

σi(t, s)ds.

It we set

z(t, TF , TB) =
1

TB − TF

+ y(t, TF , TB)

then var(y(t, TF , TB)) = var(z(t, TF , TB)) and the stochastic differential equation

(2.7) can be written as

dz(t, TF , TB) =
∑

i

θ2
i (t)z(t, TF , TB)dt + z(t, TF , TB)

∑

i

θi(t)dW̃i(t).

With a view to calculating E0[z(t, TF , TB)] and var0[z(t, TF , TB)] we set

m(t) = ln z(t, TF , TB) (B.1)

and

n(t) = ln
(
z(t, TF , TB)

)2
= 2m(t). (B.2)

13We remind the reader that at time t the integral
∫ t

0

(∫ TB

TF

σi(u, s)ds
)

dW̃i(u) is a realized quantity
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Application of Itô’s lemma to (B.1) followed by an integration yields

m(t) = m(0) +
1

2

∑

i

∫ t

0
θ2
i (u)du +

∑

i

∫ t

0
θi(u)dW̃i(u) (B.3)

and it follows from (B.2) that

n(t) = 2m(0) +
∑

i

∫ t

0
θ2
i (u)du + 2

∑

i

∫ t

0
θi(u)dW̃i(u) (B.4)

Since we assume that the volatility functions σi(t, s) are deterministic functions of

time, it follows that the θi(t) are deterministic functions of time. Hence (B.3) and

(B.4) imply that both m(t) and n(t) are normally distributed and we readily calculate

that

m(t) ∼ N

(
m(0) +

1

2

∑

i

∫ t

0
θ2
i (u)du ,

∑

i

∫ t

o

θ2
i (u)du

)
, (B.5)

and

n(t) ∼ N

(
2m(0) +

∑

i

∫ t

0
θ2
i (u)du , 4

∑

i

∫ t

o

θ2
i (u)du

)
. (B.6)

We recall that if a random variable v(t) is distributed N
(
µ(t), σ2(t)

)
then

E

[
ev(t)

]
= eµ(t)+ 1

2
σ2(t)

Using this result we calculate from (B.5) and (B.6) that

E0 [z(t, TF , TB)] = E0

[
em(t)

]
= exp

(
m(0) +

∑

i

∫ t

0
θ2
i (u)du

)
(B.7)

and

E0

[
z(t, TF , TB)2

]
= E0

[
en(t)

]
= exp

(
2m(0) + 3

∑

i

∫ t

0
θ2
i (u)du

)
(B.8)

Using (B.7) and (B.8) and the relationship

var [y(t, TF , TB)] = var [z(t, TF , TB)]

= E0

[
z(t, TF , TB)2

]
−
(
E0 [z(t, TF , TB)]

)2

equation (2.7) is readily derived.

APPENDIX C. FIXED-MATURITY FORWARD RATE EVOLUTION

Consider an investor who holds a bond maturing at TF and seek the return he or she

would earn between TF and TB(> TF ), if he or she contracted now at time t. The
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required rate of return is the discrete forward rate f(t, TF , TB) defined by

P (t, TF ) = P (t, TB) exp
(
f(t, TF , TB)(TB − TF )

)

ie.

f(t, TF , TB) =
1

TB − TF

ln

[
P (t, TF )

P (t, TB)

]

=
1

TB − TF

∫ TB

TF

f(t, s)ds

Recall that the evolution of the instantaneous forward rate is

f(t, TB) = f(0, TB) +
∑

i

[∫ t

0
σi(u, TB)

∫ TB

u

σi(u, v)dv du +

∫ t

0
σi(u, TB)dW̃i(u)

]

Therefore, the discrete forward rate f(t, TF , TB) evolves according to

f(t, TF , TB) =
1

TB − TF

∫ TB

TF

f(0, s)ds +
1

TB − TF

∑

i

∫ TB

TF

∫ t

0
σi(u, s)

∫ s

u

σi(u, v)dv du ds

+
1

TB − TF

∫ TB

TF

∫ t

0
σi(u, s)dW̃i(u) ds

=
1

TB − TF

∫ TB

TF

f(0, s)ds +
1

TB − TF

∑

i

∫ t

0

∫ TB

TF

σi(u, s)

∫ s

u

σi(u, v)dv ds du

+
1

TB − TF

∫ t

0

∫ TB

TF

σi(u, s)ds dW̃i(u)

The conditional variance of the fixed-maturity forward rate is thus readily calculated

as

var
(
f(tj , TF , TB)|f(tj−1, TF , TB)

)
=

1

(TB − TF )2

∑

i

∫ tj

tj−1

(∫ TB

TF

σi(u, s)ds

)2

du

APPENDIX D. FULL INFORMATION LOG LIKELIHOOD FUNCTION

FOR QUOTED FUTURES PRICES

The main task in deriving the log likelihood function is to calculate the Jacobian

of the transformation and write out the drift vector and covariance matrix for each

transition log likelihood function. These quantities then can be substituted directly to

the formula in the text (equations 3.9, 3.11, 3.12 and 3.13) to write out the likelihood

function for observable futures prices.

From 3.4

Xjk = ln(Fjk) ≡ ζ(Fjk)
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we have

∂ζ(Fjk; θ)

∂Fjk

=
1

Fjk

From (3.2)

Fjk =
1

1 +
(
1 −

Gjk

100

)
τ
≡ η

(
Gjk

)
,

where τ = 90/360 for CME Eurodollar futures, we find that

∂η(Gjk; θ)

∂Gjk

=
− τ

100[
1 +

(
1 −

Gjk

100

)
τ
]2

The variance

βj(kk) =

∫ tj

tj−1

(∫ TBk

TFk

σ(u, s)ds

)2

du +

∫ tj

tj−1

σ2
εdu

= M2I00 + 2MNI01 + N2I02 + 2MRI11

+ 2NRI12 + R2I22 + σ2
ε(tj − tj−1),

where

M = σ0(TBk − TFk)

N = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk − e−κTFk

)
−

σ1

κ

(
TBk e−κTBk −TFk e−κTFk

)

R =
σ1

κ

(
e−κTBk − e−κTFk

)

Iab =

∫ tj

tj−1

τa eκbτ dτ

=

(
− eκbτ

[
1

(−κb)
τa +

a

(−κb)2
τa−1 +

a(a − 1)

(−κb)3
τa−2 + . . .

. . . +
a(a − 1) . . . 2

(−κb)a
τ +

a(a − 1) . . . 1

(−κb)a+1
τ0

]) ∣∣∣∣∣

tj

tj−1

The covariance (where k1 6= k2)

βj(k1k2) =

∫ tj

tj−1

(∫ TBk1

TFk1

σ(u, s)ds

)(∫ TBk2

TFk2

σ(u, s)ds

)
du

= M1M2I00 + (M1N2 + N1M2)I01 + N1N2I02

+ (M1R2 + R1M2)I11 + (N1R2 + R1N2)I12 + R1R2I22
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where

M1 = σ0(TBk1 − TFk1)

M2 = σ0(TBk2 − TFk2)

N1 = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk1 − e−κTFk1

)
−

σ1

κ

(
TBk1 e−κTBk1 −TFk1 e−κTFk1

)

N2 = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk2 − e−κTFk2

)
−

σ1

κ

(
TBk2 e−κTBk2 −TFk2 e−κTFk2

)

R1 =
σ1

κ

(
e−κTBk1 − e−κTFk1

)

R2 =
σ1

κ

(
e−κTBk2 − e−κTFk2

)

and Iab are defined as in the variance formulae.

The drift term is equal to minus a half of the corresponding variance term.
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